
1

CFD97 - Fifth Annual Conference
of the

Computational Fluid Dynamics Society of Canada

University of Victoria
Victoria, British Columbia

Workshop on Multi-Phase Flow and Particle Methods

Review of Numerical Methods

Norman L. Johnson
Theoretical Division - Fluid Dynamics Group

Los Alamos National Laboratory
Los Alamos, New Mexico USA 87544

nlj@lanl.gov
505 667-9094



Numerical Solution to Differential Equations in CFD

Classification of PDE
PDE type

Parabolic
Hyperbolic
Elliiptic

Linear or Nonlinear
Order of PDE
Homogeneuos

Boundary and initial conditions
fixed, fluxed, or mixed

Choice of state variables
Primitive variables (pressure, velocity, density, ...)
Non-primative

stream and vorticity functions
spectrum of primative variables

Method of producing discrete equations from continuous conservation eqns
Finite Difference
Finite Volume
Weighted Residuals

Finite Element
Collocation / Spectral

Boundary value ....
Solution method for time evolution

Explicit
Implicit
Mixed

Solution method for a given state
Direct substituion
Matrix solution (Implicit method)

Direct inversion
Iterative (Successive Over Relaxation)

always necessary if nonlinear
Meaning of computational points (Mesh or nonmesh)

Material movement thru mesh
Eulerian (spatial points)
Lagrangian (material points)  SPH and Free Lagrangian
ALE (Arbitrary Lagrangian-Eulerian)

Logical or Unstructured mesh
Fixed connectivity or Variable connectivity: Free Lagrangian; SPH

Choice of coordinates
rectangular
curvilinear

cylindrical (2D: rz, r-theta)
spherical

Order of solution (accuracy per cell or cycle)
Spatial
Temporal

Solution charateristics
Stability
Consistancy
Accuracy
Efficiency
Convergence and Convergence rates



Introduction to Computational Fluid Dynamics

Nomenclature

Notation for partial derivatives

∂u

∂x
≡ ux (or Dxu or ∂xu)

∂2u

∂x∂y
≡ uxy (or Dxyu or ∂xyu)

Vector notation
a vector: u, ~u, u

∼
, u→,u

a tensor
(2nd order)

τ ,~~τ , τ
∼
, τ→→, τ

components of a vector: u = u1δ1 + u2δ2 + u3δ3

=
3∑
i=1

uiδi

u = uiδi using summation convention

unit tensor
(also I)

δ =
3∑
i=1

δi · δi

δ = δijδiδj where δij =
{

1 if i = j
0 if i 6= j

Kroneker delta

divergence ∇ = δi
∂

∂xi

Laplacian ∇2 = ∇ · ∇ =
∂

∂x2
i



Classification of Partial Differential Equations

Order of PDE: order of highest derivative in PDE

Type:

A general, 2nd order PDE:

a ∂xxu+ b ∂xyu+ c ∂yyu+ e = 0

or

a uxxu+ b uxy + c uyy + e = 0

where a, b, c, d, e may be functions of x, y, u, ux, uy

then
hyperbolic if b2 − 4ac > 0 (roots real & distinct)

uxx − uyy = f(ux, uy, x, y, u)

parabolic if b2 − 4ac = 0 (roots real & equal)

uxx = f(ux, uy, x, y, u)

elliptic if b2 − 4ac < 0 (roots: complex)

uxx + uyy = f(ux, uy, x, y, u)

Classification not affected by nonsingular transformation of variables.

Each classification has different behavior and solution techniques.

Linearity

A PDE is linear if the principle of superposition holds:

if u1 and u2 are solutions to a given PDE,

then a1u1 + a2u2 is also a solution (a1 and a2 constants)

otherwise the PDE is nonlinear.



Boundary and Initial Conditions

consider

uxx + uyy = 0

when integrated, the solution contains four unknowns. Naturally would specify u(x, y) on

four boundaries → boundary conditions

consider
ut = uxx + uyy (heat eqn.)

utt = c2uxx + c2uyy (wave eqn.)

would require 5 and 6 prescribed conditions, but have only 4 boundaries → require 1 and

2 additional solutions at a prescribed time, typically t = 0→ initial conditions

General form of boundary conditions for u(x, y)

α(x, y)u+ β(x, y)un = γ(x, y)

where un is the derivative of u normal to boundary.

Special forms

γ = 0 : homogeneous b.c. (otherwise nonhomogeneous)

β = 0 : Dirichlet b.c. or specified u b.c.

α = 0 : Neumann b.c. or Flux b.c.



Hyperbolic PDE

Two forms: φξξ − φηη = f1 (φξ, φη, φ, ξ, η) typical form

φξη = f2 (φξ, φη, φ, ξ, η) characteristic coordinate form

These can be shown to be equivalent through a coordinate transformation.

Hyperbolic (and parabolic) equations result from problems involving time as one indepen-

dent variable and semi-infinite domain (time is unbounded). They require boundary and

initial conditions.

Hyperbolic equations generally originate from vibration problems or from problems where

discontinuities can persist in time (shock waves).

Analytic solutions of two independent variables often use the method of characteristics,

which reduce the solution to solving ordinary differential equations.

Unlike elliptic and parabolic solutions, the influence of the domain on the solution at a

particular point is limited in extent (see the following example).

Example Solve

utt = c2uxx −∞ < x < +∞

b.b. (1): u(x, 0) = f(x)

b.c. (2): ut(x, 0) = g(x)

use the alternative form uξη = 0 where

ξ = x− ct

η = x+ ct



t

x0 - ct0
x0 + ct0

x

(x0, t0)

1 1

1
c

1
c

Hyperbolic PDE (cont.)

Integrate
u(ξ, η) = F1(η) + F2(ξ)

or u(x, t) = F1(x+ ct) + F2(x− ct)

b.c. (1): f(x) = F1(x) + F2(x)

b.c. (2): g(x) = cF ′1(x)− cF ′2(x)

⇒ u(x, t) = 1
2 [f(x+ ct)− f(x− ct)] + 1

2c

∫ x+ct

x−ct g(τ)dτ

Note solution at (x0, t0) only depends on initial data: x0 − ct0 ≤ x ≤ x0 + ct0

- behavior characteristics of all hyperbolic equations



fluid

u(t,∞) = 0

u(0,y) = 0

u = u0 for
t > 0

y

Parabolic PDE

General Form: φξξ = f(φξ, φη, φ, ξ, η)

Parabolic equations result from diffusional processes that have time as one independent

variable and a semi-infinite domain. They require initial and boundary conditions. They do

not exhibit the limited zones of influence that hyperbolic equations have, i.e., the solution

of a parabolic PDE at some time depends on the state in the physical domain at all earlier

times.

Example. Rayleigh problem: viscous fluid set in motion by a uniformly moving flat plate.

ut = νuyy for 0 < y <∞

i.c. u(0, y) = 0

b.c. 1 u(t, 0) = u0 for t > 0

b.c. 2 u(t,∞) = 0



Parabolic PDE (continued)

Solve by similarity solution. Introduce a change of variables (a guess) that may reduce

the number of independent variables from 2 to 1. ⇒ PDE→ ODE.

use η =
y

2
√
νt
⇒ ∂u(η)

∂t
= −yν

4
(νt)3/2 ∂u

∂η

&
∂2u(η)
∂y2

=
1

4νt
∂2u

∂η2

then PDE becomes
∂2u

∂η2
+

y√
νt

∂u

∂η
=
∂2u

∂η2
+ 2η

∂u

∂η
= 0

same for boundary and initial conditions

b.c. 1 : u(η = 0) = u0

i.c. & b.c. 2: u(η →∞) = 0

Because t and y do not appear in PDE or b.c. or i.c. then similarity solution worked.

Integrate ODE
d

dη

du

dη
= −2η

du

dη

ln
du

dη
= −η2 + c′1

du

dη
= c1e

−η2

⇒ u =
∫
c1e
−η2

dη + c2

Apply b.c.

u(η) = u0

[
1− 2√

π

∫ η

0

e−η
2
dη

]
u(η) = u0 [1− erf(η)]



y
y = 1

T = 0

T = T0 x = 1

T = 0

x

T = 0

Elliptic PDEs
General form:

φξξ + φηη = f (φξ, φη, ξ, η, φ)

are associated with equilibrium or steady state problems in a bounded domain.

The solution at any point in the domain depends on the boundary conditions at every
point or a disturbance introduced at any point influences all other points in the domain.

Examples: Laplace’s and Poisson’s equation
∇2φ = 0 ∇2φ = g

Solvable analytically only for simple geometries

Example Heat conduction in a block
∇2T = Txx + Tyy = 0 for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1

T (0, y) = 0 T (1, y) = 0

T (x, 0) = T0 T (x, 1) = 0

Solve by separation of variables: assume: T (x, y) = X(x)Y (y)
then X ′′ + α2X = 0 Y ′′ − α2Y = 0

X(0) = 0
X(1) = 0 Y (1) = 0

solution X(x) = A sin(αx) Y (y) = c sinh[α(y − 1)]
b.c. X(1) = 0⇒ α = nπ n = 1, 2, . . .

T (x, 0) = T0 ⇒ An = 2T0
nπ

[
(−1)n−1
sinh(nπ)

]
then T (x, y) =

∞∑
n=1

An sin(nπx) sinh[nπ(y − 1)]



Examples of PDEs

1. 1st order wave equation (hyperbolic)

∂u

∂t
+ c

∂u

∂x
= 0 or ut + cux = 0

Propagation of a wave at speed c. Note: different from 2nd order wave equation—

equivalent to two coupled first-order wave equations.

2. 2nd order wave equation (hyperbolic)

∂2y

∂t2
− α2 ∂

2y

∂x2
= 0

Motion of a string.

3. Burger’s equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
or ut + uux = νuxx

Nonlinear wave equation with diffusion.

Fluid flow with viscosity in 1D.

4. Tricomi equation (elliptic or hyperbolic)

yuxx + uyy = 0

describes steady state, inviscid, transonic flows in 2D



5. Poisson’s equation (elliptic)

uxx + uyy = f(x, y)

Steady state heat conduction with a heat source in a solid.

Electric field in a region of charge.

If f(y, x) = 0, becomes Laplace equation.

6. Advection-diffusion equation in 1D

∂φ

∂t
+ u

∂φ

∂x
= α

∂2φ

∂x2

Advection of passive scalar φ with velocity u and with viscosity (or diffusion α).

∂tφ = α∂xxφ is the unsteady heat or diffusion equation (parabolic).

7. Helmholtz equation (elliptic)

∂2u

∂x2
+
∂2u

∂y2
+ k2u = 0

Governs the motion of time-dependent harmonic waves where k is the frequency

parameter.



General Navier-Stokes Equations

Motion of a continuous medium is governed by classical mechanics (conservation of mass,

momentum and energy) and thermodynamics.

Most general form of the conservation equations is in integral form (properties can be

discontinuous).

mass
d

dt

∫
V

ρ dV +
∫
S

ρu · n dS = 0

momentum
d

dt

∫
V

ρu dV +
∫
S

[(n · u)ρu− n · σ] dS =
∫
V

ρf dV

total energy
d

dt

∫
V

ρE dV +
∫
S

n · [ρEu− σ · u + q] dS =
∫
V

ρf · u dV

V & S are the stationary volume and surface

n is the normal to surface S

t – time σ – stress tensor

ρ – density traction = n · σ (area)

u – velocity

f – external force E – total energy per mass

per volume E = I + 1
2u

2

q – heat flux ↑ internal energy



Navier-Stokes Equations (continued)

If properties are continuous and sufficiently differentiable, then integral form ⇒ conserva-

tive differential form:

use Gauss Divergence thru∫
V

∇ · ν dV =
∫
S

n · ν dS

mass
∂ρ

∂t
+∇ · (ρu) = 0

momentum
∂(ρu)
∂t

+∇ · (ρuu− σ) = ρf

total energy
∂

∂t
ρE +∇ · (ρEu− σ · u + q) = ρf · u

Alternative energy form (internal energy equation)

ρ
De

Dt
− σ : ∇u +∇ · q = 0 assuming σ symmetric

Not in conservative form!

where
D

Dt
=

∂

∂t
+ u · ∇ substantial or material derivative

Often the stress tensor σ is divided into an isotropic component, the thermodynamic

pressure p, and a deviatoric stress tensor τ

σ = −pδ + τ

Note these conservation equations hold for all materials but must have constitutive

equations to be useful.



Navier Stokes Equations (continued)

Use Newton’s Law of Viscosity with κ = 0 and Fourier’s Law of Heat Conduction

then τ = µ
[
γ̇ − 2

3 (∇ · u)δ
]

Then the conservation equation for momentum becomes

ρ
Du
Dt

= −∇p+ ρf +∇ · µ
[
γ̇ − 2

3
(∇ · u)δ

]
Navier-Stokes equation

The corresponding internal energy equation is

ρ
De

Dt
+ p∇ · u = Φ−∇ · q

Φ = τ : ∇u = −2
3
µ(∇ · u)2 +

1
2
µγ̇ : γ̇

Φ, dissipation function, is the rate at which mechanical energy is converted into heat.

Alternative energy equation in terms of T

ρCp
DT

Dt
= k∇2T + Φ often ν = k

ρCp

with K = const.

D
Dt = ∂

∂t + u · ∇



Constitutive Relationships

— Relate state variables to fluxes

(ρ,u, E, I) to (p,q,σ)

— Are material dependent, both in functionality and in the specification of values for

the parameters in the constitutive equation.

— Are usually empirical in origin—but can be derived theoretically in some cases.

Examples

Equation of State (EOS) p(ρ, e) or p(ρ, T )

(assumes equilibrium thermodynamics)

p = (γ − 1)ρe Ideal or gamma-law gas

Fourier’s Law of Heat Conduction

q = −k∇T T is the temperature

and

k is the thermal conductivity

Newton’s Law of Viscosity

τ =
(
κ− 2

3
µ

)
(∇ · u)δ + µγ̇

µ - shear viscosity δ - identity tensor

k - bulk or dilatational viscosity γ̇ = [∇u + (∇u)+]

κ = 0 for simple fluids (monotonic gases)



Limiting Forms of the Navier Stokes Equations

Incompressible (∇ · u = 0) Note: this does not mean uniform density.

ρ
Du
Dt

= −∇p+ δf +∇ · (µγ̇)

ρCp
DT

Dt
= K∇2T +

1
2
µγ̇ : γ̇ const k & µ

Creeping flow (Inertia neglected or small NRe = Dµ
ν )

Du

Dt
→ ∂u

∂t
(note: not steady state)

Constant Viscosity

∇ · (µγ̇)→ µ∇ · γ̇

Invisid (µ = 0)

ρ
Du
Dt

= −∇p+ ρf

ρCp
DT

Dt
= k∇2T

Burger’s Equation f = 0, incompressible

p = const, 1D flow u(t, x)

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2

... and many others



u(x)

x - h x x + h

u(x + h)

u(x)

u(x-h)

Difference Approximations for Derivatives

Recall the Taylor Series

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h2f ′′′

3!
(x) + O(h4)︸ ︷︷ ︸

(does not

indicate size

—just rate)

then

u(x+ h) = u(x) + hu′(x) +
1
2
h2u′′(x) +

1
6
h3u′′′(x) +O(h4) (1)

u(x− h) = u(x)− hu′(x) +
1
2
h2u′′(x)− 1

6
h3u′′′(x) +O(h4) (2)

add (1) and (2)

u(x+ h) + u(x− h) = 2u(x) + h2u′′(x) +O(h4)

solve for u′′(x)

u′′(x) =
(
d2u

dx2

)
x=x

=
1
h2
{u(x+ h)− 2u(x) + u(x− h)}+O(h2)

subtract (1) and (2) (3)

u(x+ h)− u(x− h) = 2hu′(x) +O(h3)



Difference approximations (continued)

solve for u′(x)

u′(x) =
1

2h
{u(x+ h)− u(x− h)}+O(h2) (4)

Equations (3) and (4) represent central-difference approximations of the derivatives, and

both have errors of O(h2)

solve (1) and (2) for u′(x) directly

u′(x) =
1
h
{u(x+ h)− u(x)}+O(h) forward difference

u′(x) =
1
h
{u(x)− u(x− h)}+O(h) backward difference

Note: that these have error of O(h) where the central difference approximations have O(h2).

General Form (−1 ≤ α ≤ 1)

u′(x) ≈ (1− α)u(x+ h) + 2αu(x)− (1 + α)u(x− h)
2h

The error is −αh2 u′′(x)− h2

6 u
′′′(x)

for α = 0 centered

α = 1 backward

α = −1 forward

⇒ Error is only h2 for α exactly equal to 0.

Using the Taylor expansion, one can find higher order approximations, for example

u′(x) =
−u(x+ 2h) + 8u(x+ h)− 8u(x− h) + u(x− 2h)

12h
+O(h2)

In general: “Higher order — reach farther”



∆t

uL
n+1

uL
n

t = t n+1

t = t n

t = t n-1

x = xi-1 xi xi+1

un
L-1 un

L+1

Finite-Difference Method

Finite-difference method replaces the continuous problem domain by a discrete or finite

difference mesh or grid.

Define xi ≡ i∆x , xi+1 = (i+ 1)∆x

ui ≡ u(xi)

In a similar manner, the time domain is discretized:

tn ≡ n∆t

for u(t, x) : uni ≡ u(n∆t, xi)

Finite-difference method replaces the derivatives in a PDE with finite approximations.

Examples with u(t, x)

forward
(
∂u

∂t

)
t=tn
x=xi

≈ un+1
i − uni

∆t
× - above

central
(
∂2u

∂x2

)
t=tn
x=xi

≈
uni+1 − 2uni + uni−1

∆x2
© - above



x

T(0,x)

1

0 11
2

T = 0

x = 0 x = 1

insulated rod

Finite-Difference Method (continued)

Example (continued)

∂u

∂t
=
∂2u

∂x2
⇒ un+1

i − uni
∆t

=
uni+1 − 2uni + uni−1

∆x2

Assume all values at tn known, solve for unknown un+1
i

un+1
i = r uni+1 + (1− 2r)uni + r uni−1

where r =
∆t

∆x2

Therefore, given boundary values and initial values, un+1
i can be calculated for all future

times at all positions.

Example

solve
∂T

∂t
=
∂2T

∂x2
parabolic, heat conduction in 1D.

i.c. T (0, x) =
{

2x 0 ≤ x ≤ 1
2

2(1− x) 1
2 ≤ x ≤ 1

b.c. 1 T (t, 0) = 0

b.c. 2 T (t, 1) = 0

take
∆x = 1

10

∆t = 1
10000

}
r = 1

10



Finite Difference Method (continued)

solution Tn+1
i = 1

10

(
Tni−1 + 8Tni + Tni+1

)

i = 0 1 2 3 4 5

xi = 0 0.1 0.2 0.3 0.4 0.5

n t

0 0 0 0.2 0.4 0.6 0.8 1.0

1 0.001 0 0.2 0.4 0.6 0.8 0.96

2 0.002 0 0.2 0.4 0.6 0.7960 0.9280

3 0.003 0 0.2 0.4 0.5996 0.7896 0.9016

10 0.01 0 0.1996 0.3968 0.5822 0.7281 0.7867

20 0.02 0 0.1938 0.3781 0.5373 0.6486 0.6891

u1
5 =

1
10
{0.8 + (8× 1) + 0.8} = 0.9600

u2
4 =

1
10
{0.6 + (8× 0.8) + 0.96} = 0.7960

u2
1 =

1
10
{0 + (8× 0.2) + 0.4} = 0.2 unchanged!

Analytical solution

T (t, x) =
8
π2

∞∑
n=1

1
n2

(
sin

1
2
nπ

)
(sinnπx) e−n

2π2t



Example Heat Conduction

Comparison of Finite difference and analytical solution at x = 0.3

t FD Analytical Difference % error

0.005 0.5971 0.5966 0.0005 0.08

0.01 0.5822 0.5799 0.0023 0.4

0.02 0.5373 0.5334 0.0039 0.7

0.10 0.2472 0.2444 0.0028 1.1

A similar comparison at x = 0.5 shows errors of 2.3, 1.6, 1.2, 1.2 respectively ⇒

Discontinuities in initial data lead to larger errors. Method is accurate to O(∆t) if the

initial data has derivatives that are continuous, otherwise decreases.

Example redo last problem but with the ∆t larger.

take: ∆x = 1
10 as before, ∆t = 5

1000 so r = ∆t
∆x2 = 0.5

then un+1
i = 1

2

(
uni−1 + uni+1

)
x = 0.1 0.2 0.3 0.4 0.5 0.6

t = 0.0 0.2000 0.4000 0.6000 0.8000 1.000 0.8000
0.005 ” ” ” ” 0.8000 0.8000
0.010 ” ” ” 0.7000 0.8000 0.7000
0.015 ” ” 0.5500 0.7000 0.7000 0.7000
0.020 ” 0.3750 0.5500 0.6250 0.7000 0.6250

...
0.100 0.0949 0.1717 0.2484 0.2778 0.3071 0.2778

and

t FD (x = 0.3) analytical Difference % error
0.005 0.6000 0.5966 0.0034 0.57
0.01 0.6000 0.5799 0.0201 3.5
0.02 0.5500 0.5334 0.0166 3.1
0.1 0.2484 0.2444 0.0040 1.6



Example increase ∆t even more.

take ∆x = 1
10 as before, ∆t = 1

100 , r = 1.0

x = 0.1 0.2 0.3 0.4 0.5

t = 0.0 0.2 0.4 0.6 0.8 1.0

0.01 ” ” ” ” 0.6

0.02 ” ” ” 0.4 1.0

0.03 ” ” 0.2 1.2 −0.2

0.04 ” 0.0 1.4 −1.2 2.6

using un+1
L = uni−1 − uni + uni+1

What’s wrong? Fourier or von Neumann analysis shows that difference expression is stable

if

0 < r ≤ 1
2

where r =
∆t

∆x2
(see next page)

In general, finite difference approximations of

(parabolic)
∂u

∂t
= α

∂2u

∂t2
has stability restrictions based on α

∆t
∆x2

and

(hyperbolic)
∂u

∂t
= −c∂u

∂x
has restrictions based on c

∆t
∆x

,

the Courant-Friedrichs-Lewy (CFL) condition

and

(mixed)
∂u

∂t
+ c

∂u

∂t
= α

∂2u

∂x2
has restrictions on both.



Top figure for r = 0.48

Bottom figure for r = 0.52

Comparison of the solution around the turning point for stability, r = 1/2.



Important Concepts in Numerical Methods

Truncation error is the difference between the PDE and the equivalent finite difference

expression (FDE).

Example for the heat conduction equation

∂u

∂t
− α∂

2u

∂x2︸ ︷︷ ︸
PDE

=
un+1
j − unj

∆t
− α

∆x2

(
unj+1 − 2unj + unj−1

)
︸ ︷︷ ︸

FDE

+
[
−∂

2u

∂t2
∣∣
n,j

∆t
2

+ α
∂4u

∂x4

∣∣
n,j

∆x2

12
+ . . .

]
︸ ︷︷ ︸

T.E. of 0(∆t,∆x2)

Discretization and Round-Off Errors

Round-off errors occur because of limited precision on computers. In some FDEs, round-off

errors are proportional to ∆x, then refining the mesh may reduce the truncation error but

increase the round-off error.

In the absence of round-off errors, discretization error is the difference between the solution

of the PDE and the FDE. The discretization error is caused by the truncation error, plus

any errors introduced by the boundary and initial conditions.



Important Concepts (continued)

Stability

A stable numerical process limits amplification of all components of the initial conditions.

Stability is a subtle concept that is difficult to establish analytically. The Fourier analysis

perturbs the FDE at all frequency components and an expression is locally stable if all

components remain bounded. Locally stable is also called weakly stable.

Example
un+1
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has a truncation error of O(∆t2,∆x2) but is unconditionally unstable for any ∆t,∆x.

Consistency

An FDE that is consistent or compatible with the PDE is one which the truncation

error goes to zero as ∆t and ∆x go to zero.

Convergence

An FDE is convergent is the solution to the FDE tends to the solution of the PDE as ∆t

and ∆x go to zero.
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Important Concepts (continued)

Well or properly posed problem

A problem is properly posed if:

i) The solution is unique if it exists.

ii) The solution depends continuously on the initial data.

iii) A solution always exists for initial data that is arbitrarily close to initial data for
which no solution exists. (A continuous approximation to a boundary condition
that is discontinuous.)

Comment: often nonlinear PDEs are ill posed.

Desire: Well-posed computational solution, too.

Lax’s equivalence theorem

Given a properly posed linear, initial value problem and a linear finite difference that
satisfies the consistency conditions,

Stability is a necessary and sufficient condition for convergence.

The reason why we often accept a stable solution as an accurate solution.

For the Navier-Stokes equations:

— not possible to demonstrate convergence directly.

— can show methods are consistent.

— can usually show linearized equations are stable.

Therefore, Lax theorem tends to provide a necessary, rather than sufficient, condition for
convergence for the Navier-Stokes equations.
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